How do you evaluate the integral #((x^2)+1) e^-x dx# from 0 to 1?

1 Answer
Apr 11, 2018

# 3/e(e-2)#.

Explanation:

Let, #I=int(x^2+1)e^-xdx#.

Using the following Rule of Integration by Parts (IBP) :

IBP : #intuv'dx=uv-intvu'dx#.

We take, #u=x^2+1, and, v'=e^-x#.

#:. u'=2x, and, v=inte^-xdx=e^-x/-1=-e^-x#.

#:. I=-(x^2+1)e^-x-int(-e^-x*2x)dx#,

#rArr I=-(x^2+1)e^-x+2I_1," where, "I_1=intxe^-xdx#.

We once again use IBP for #I_1#; this time, we choose,

#u=x, and, v'=e^-x :. u'=1, and, v=-e^-x#.

#:. I_1=-xe^-x-int(-e^-x*1)dx#,

#: I_1=-xe^-x-e^-x#.

Utilising #I_1# in #I#, we get,

#I=-(x^2+1)e^-x+2{-xe^-x-e^-x}#,

# rArr I=-(x^2+2x+3)e^-x+C#.

#:. int_0^1(x^2+1)e^-xdx=-[(x^2+2x+3)e^-x]_0^1#,

#=-[(1+2+3)e^-1-(0+0+3)e^-0]#.

# rArr int_0^1(x^2+1)e^-xdx=-(6/e-3)=3/e(e-2)#.

Enjoy Maths.!