How do you evaluate the limit #((2x+8)/(x^2-12)-1/x)/(x+6)# as x approaches -6? Calculus Limits Determining Limits Algebraically 1 Answer Noah G Nov 19, 2016 The limit is #1/36#. Explanation: #=>lim_(x-> -6)((x(2x + 8) - (1(x^2 - 12)))/(x(x^2 - 12)))/(x + 6)# #=>lim_(x->-6)((2x^2 + 8x - x^2 + 12)/(x^3 - 12x))/(x + 6)# #=>lim_(x->-6) ((x^2 + 8x + 12)/(x^3 - 12x))/(x + 6)# #=>lim_(x->-6) (((x + 6)(x + 2))/(x^3 - 12x))/(x + 6)# #=>lim_(x->-6) ((x + 6)(x+ 2))/((x^3 - 12x)(x + 6))# #=>lim_(x->-6) (x + 2)/(x^3- 12x)# #=> (-6 + 2)/(-6^3 - 12(-6))# #=> (-4)/(-144)# #=> 1/36# Hopefully this helps! Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 3835 views around the world You can reuse this answer Creative Commons License