How do you evaluate this integral?
#int(x^(2))/((4-x^(2))^(3/2))dx#
1 Answer
The integral equals
Explanation:
Try using the trig substitution
#I = int (2sintheta)^2/(4 - (2sintheta)^2)^(3/2) * 2costheta d theta#
# I = int (4sin^2theta)/(4 - 4sin^2theta)^(3/2) * 2costheta d theta#
#I = int (4sin^2theta)/(sqrt(4 - 4sin^2theta)^3) * 2costheta d theta#
#I = int (4sin^2theta)/sqrt((4cos^2theta)^3) * 2costheta d theta#
#I = int (4sin^2theta)/(8cos^3theta) * 2costheta d theta#
#I = int (sin^2theta)/cos^2thetad theta#
Which is equivalent to
#I = tan^2theta d theta#
Use the identity
#I = sec^2theta - 1 d theta#
This is a known integral
#I = tan theta - theta + C#
Reverse the substitutions. We know that
#I = x/sqrt(4 - x^2) - arcsin(x/2) +C#
Hopefully this helps!