How do you evaluate this integral?

#int(x^(2))/((4-x^(2))^(3/2))dx#

1 Answer
Oct 4, 2017

The integral equals #x/sqrt(4 - x^2) - arcsin(x/2) + C#

Explanation:

Try using the trig substitution #x = 2sintheta#. Then #dx = 2costheta d theta# and so we can say

#I = int (2sintheta)^2/(4 - (2sintheta)^2)^(3/2) * 2costheta d theta#

# I = int (4sin^2theta)/(4 - 4sin^2theta)^(3/2) * 2costheta d theta#

#I = int (4sin^2theta)/(sqrt(4 - 4sin^2theta)^3) * 2costheta d theta#

#I = int (4sin^2theta)/sqrt((4cos^2theta)^3) * 2costheta d theta#

#I = int (4sin^2theta)/(8cos^3theta) * 2costheta d theta#

#I = int (sin^2theta)/cos^2thetad theta#

Which is equivalent to #tan^2theta#.

#I = tan^2theta d theta#

Use the identity #tan^2x = sec^2x - 1#.

#I = sec^2theta - 1 d theta#

This is a known integral

#I = tan theta - theta + C#

Reverse the substitutions. We know that #x/2 = sintheta#, and so #costheta = sqrt(4 - x^2)/2# and so #tantheta = (x/2)/(sqrt(4 - x^2)/2) = x/sqrt(4 - x^2)#

#I = x/sqrt(4 - x^2) - arcsin(x/2) +C#

Hopefully this helps!