How do you express 16a3b52a4b2 with positive exponents?

3 Answers
Jun 23, 2018

See a solution process below:

Explanation:

First, rewrite the expression as:

162(a3a4)(b5b2)8(a3a4)(b5b2)

Next, use these rules for exponents to simplify the a term:

xaxb=xab and a1=a

8(a3a4)(b5b2)

8a34(b5b2)

8a3+4(b5b2)

8a1(b5b2)

8a(b5b2)

Now, use this rule for exponents to simplify the b term:

8a(b5b2)

8a(1b25)

8a(1b2+5)

8a(1b7)

8ab7

Jun 23, 2018

8ab7

Explanation:

16a3b52a4b2

Use the rule for exponents: an=1an

and the rule anam=anm

16a3b52a4b2

first let's simplify:

16a3b52a4b2

8a3(4)b52

8a3+4b7

8ab7

Now move the negative exponents:

8ab7

Jun 23, 2018

16a3b52a4b2

Group the like terms.

=162a3a4b5b2

Use the rule xpxq=xpq

=8a3+4b52

Simplify the exponents.

=8ab7

Use the rule xn=1xn to write it with positive exponents.

=8a1b7

Simplify.

=8ab7