How do you express cos(4θ) in terms of cos(2θ)?

1 Answer
Jun 10, 2015

cos(4θ)=2(cos(2θ))21

Explanation:

Start by replacing 4θ with 2θ+2θ

cos(4θ)=cos(2θ+2θ)

Knowing that cos(a+b)=cos(a)cos(b)sin(a)sin(b) then

cos(2θ+2θ)=(cos(2θ))2(sin(2θ))2

Knowing that (cos(x))2+(sin(x))2=1 then

(sin(x))2=1(cos(x))2

cos(4θ)=(cos(2θ))2(1(cos(2θ))2)

=2(cos(2θ))21