How do you express sin x/2 in terms of cos x using the double angle identity?

1 Answer
Oct 18, 2015

Express sin (x/2) in terms of cos x.

Ans: sin (x /2) = sqrt((1 - cos x)/2)sin(x2)=1cosx2

Explanation:

By applying the trig identity: cos 2a = 1 - 2sin^2 acos2a=12sin2a, we get:
cos x = 1 - 2sin^2 (x/2)cosx=12sin2(x2)
2sin^2 (x/2) = 1 - cos x2sin2(x2)=1cosx
sin^2 (x/2) = (1 - cos x)/2sin2(x2)=1cosx2
sin (x/2) = +- sqrt((1 - cos x)/2)sin(x2)=±1cosx2