How do you express (x^2 + 5x - 7 )/( x^2 (x+ 1)^2)x2+5x7x2(x+1)2 in partial fractions?

1 Answer
Nov 4, 2016

The answer is =-7/x^2+19/x-11/(x+1)^2-19/(x+1)=7x2+19x11(x+1)219x+1

Explanation:

(x^2+5x-7)/(x^2(x+1)^2)=A/x^2+B/x+C/(x+1)^2+D/(x+1)x2+5x7x2(x+1)2=Ax2+Bx+C(x+1)2+Dx+1
(A(x+1)^2+Bx(x+1)^2+Cx^2+Dx^2(x+1))/(x^2(x+1)^2)A(x+1)2+Bx(x+1)2+Cx2+Dx2(x+1)x2(x+1)2

x^2+5x-7=A(x+1)^2+Bx(x+1)^2+Cx^2+Dx^2(x+1)x2+5x7=A(x+1)2+Bx(x+1)2+Cx2+Dx2(x+1)
let x=0x=0 =>-7=A7=A
x=-1x=1=>-11=C11=C
coefficentsof x^2x2 =>1=A+2B+C+D1=A+2B+C+D
coefficients of xx=>5=2A+B5=2A+B=>B=19B=19
:.D=-19
So, (x^2+5x-7)/(x^2(x+1)^2)=-7/x^2+19/x-11/(x+1)^2-19/(x+1)