How do you factor 125x^3+8g^3?

1 Answer
Feb 13, 2017

125x^3+8g^3=(5x+2g)(25x^2-10xg+4g^2)

Explanation:

As 125x^3+8g^3=(5x)^3+(2g)^3, it can be factorized using identity x^3+y^3=(x+y)(x^2-xy+y^2)

and 125x^3+8g^3=(5x)^3+(2g)^3

= (5x+2g)((5x)^2-(5x)xx(2g)+(2g)^2)

= (5x+2g)(25x^2-10xg+4g^2)

For a proof of the identity see below.

x^3+y^3

= x^3+x^2y-x^2y-xy^2+xy^2+y^3

= x^2(x+y)-xy(x+y)+y^2(x+y)

= (x+y)(x^2-xy+y^2)