How do you factor 27x^3 - 8y^3 ?

1 Answer
Jan 15, 2016

27x^3-8y^3=(3x)^3-(2y)^3=color(red)((3x-2y))color(red)((9x^2+6xy+4y^2))

Explanation:

27x^3-8y^3 fits the form of the difference of cubes, a^3-b^3, where a=3x and b=2y.

a^3-b^3=(3x)^3-(2y)^3

a^3-b^3=(a-b)(a^2+ab+b^2)

Substitute the known values for a and b.

(3x)^3-(2y)^3=(3x-2y)((3x)^2+(3x*2y)+(2y)^2)

Simplify.

(3x)^3-(2y)^3=(3x-2y)(9x^2+6xy+4y^2)