How do you factor 36a4+90a2b2+99b4?
1 Answer
May 12, 2016
=(6a2−3(√4√11−10)ab+3√11b2)(6a2+3(√4√11−10)ab+3√11b2)
Explanation:
Taking square roots of the first and last term, let us try a factorisation of the form:
(6a2−kab+3√11b2)(6a2+kab+3√11b2)
=36a4+(36√11−k2)a2b2+99b4
So all we need to do is choose
90=36√11−k2
Add
k2=36√11−90
So:
k=±√36√11−90=±3√4√11−10
So:
36a4+90a2b2+99b4
=(6a2−3(√4√11−10)ab+3√11b2)(6a2+3(√4√11−10)ab+3√11b2)