How do you factor 3c^3+2c^2-147c-983c3+2c2147c98?

1 Answer
Oct 8, 2017

(c-7)(c+7)(3c+2)(c7)(c+7)(3c+2)

Explanation:

"rearranging the terms "rearranging the terms

(3c^3-147c)+(2c^2-98)(3c3147c)+(2c298)

"factorising each pair"factorising each pair

=color(red)(3c)(c^2-49)color(red)(+2)(c^2-49)=3c(c249)+2(c249)

"take out the "color(blue)"common factor "(c^2-49)take out the common factor (c249)

=(c^2-49)(color(red)(3c+2))to(color(red)(1))=(c249)(3c+2)(1)

c^2-49" is a "color(blue)"difference of squares"c249 is a difference of squares

•color(white)(x)a^2-b^2=(a-b)(a+b)xa2b2=(ab)(a+b)

"here "a=c" and "b=7here a=c and b=7

rArrc^2-49=(c-7)(c+7)c249=(c7)(c+7)

"returning to " (color(red)(1))returning to (1)

rArr(c^2-49)(3c+2)=(c-7)(c+7)(3c+2)(c249)(3c+2)=(c7)(c+7)(3c+2)