How do you factor #(3y + 1)^3 + 8y^3#?
1 Answer
Explanation:
The sum of cubes identity can be written:
#a^3+b^3=(a+b)(a^2-ab+b^2)#
Since both
#(3y+1)^3+8y^3 = (3y+1)^3+(2y)^3#
#color(white)((3y+1)^3+8y^3) = ((3y+1)+2y)((3y+1)^2-(3y+1)(2y)+(2y)^2)#
#color(white)((3y+1)^3+8y^3) = (5y+1)((9y^2+6y+1)-(6y^2+2y)+4y^2)#
#color(white)((3y+1)^3+8y^3) = (5y+1)(7y^2+4y+1)#
The remaining quadratic factor has no linear factors with real coefficients.
Complex factors
If we do want to factor
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We can use this with
#7(7y^2+4y+1) = 49y^2+28y+7#
#color(white)(7(7y^2+4y+1)) = (7y)^2+2(7y)(2)+2^2+3#
#color(white)(7(7y^2+4y+1)) = (7y+2)^2-(sqrt(3)i)^2#
#color(white)(7(7y^2+4y+1)) = ((7y+2)-sqrt(3)i)((7y+2)+sqrt(3)i)#
#color(white)(7(7y^2+4y+1)) = (7y+2-sqrt(3)i)(7y+2+sqrt(3)i)#
Dividing both ends by
#7y^2+4y+1 = 1/7(7y+2-sqrt(3)i)(7y+2+sqrt(3)i)#