How do you factor 8a^3 + 27b^3 + 2a + 3b?

1 Answer

8a^3+27b^3+2a+3b=(2a+3b)(4a^2-6ab+9b^2+1)

Explanation:

From the given expression
8a^3+27b^3+2a+3b

Factoring by grouping

8a^3+27b^3+2a+3b

(8a^3+27b^3)+(2a+3b)

The first two terms can be factored by sum of two cubes formula

x^3+y^3=(x+y)(x^2-xy+y^2)

so that 8a^3+27b^3=(2a+3b)(4a^2-6ab+9b^2)

Let us continue

(2a+3b)(4a^2-6ab+9b^2)+(2a+3b)

factor out the common term (2a+3b)

(2a+3b)(4a^2-6ab+9b^2+1)

therefore

8a^3+27b^3+2a+3b=(2a+3b)(4a^2-6ab+9b^2+1)

God bless...I hope the explanation is useful.