How do you factor #8x^3y^6-125#?
1 Answer
Jan 3, 2016
Explanation:
This is a difference of cubes, which takes the general form:
#a^3-b^3=(a-b)(a^2+ab+b^2)#
Recognize that
#(2xy^2)^3-5^3=(2xy^2-5)((2xy^2)^2+2xy^2(5)+5^2)#
#=(2xy^2-5)(2x^2y^4+10xy^2+25)#