How do you factor 8x^3y^6-1258x3y6125?

1 Answer
Jan 3, 2016

(2xy^2-5)(2x^2y^4+10xy^2+25)(2xy25)(2x2y4+10xy2+25)

Explanation:

This is a difference of cubes, which takes the general form:

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

Recognize that 8x^3y^6=(2xy^2)^38x3y6=(2xy2)3 and that 125=5^3125=53.

(2xy^2)^3-5^3=(2xy^2-5)((2xy^2)^2+2xy^2(5)+5^2)(2xy2)353=(2xy25)((2xy2)2+2xy2(5)+52)

=(2xy^2-5)(2x^2y^4+10xy^2+25)=(2xy25)(2x2y4+10xy2+25)