How do you factor 8x^3y^6-1258x3y6−125?
1 Answer
Jan 3, 2016
Explanation:
This is a difference of cubes, which takes the general form:
a^3-b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
Recognize that
(2xy^2)^3-5^3=(2xy^2-5)((2xy^2)^2+2xy^2(5)+5^2)(2xy2)3−53=(2xy2−5)((2xy2)2+2xy2(5)+52)
=(2xy^2-5)(2x^2y^4+10xy^2+25)=(2xy2−5)(2x2y4+10xy2+25)