How do you factor #a^2-b^2+6b-9#?
1 Answer
May 19, 2017
Explanation:
The difference of squares identity can be written:
#A^2-B^2=(A-B)(A+B)#
We can use this with
#a^2-b^2+6b-9 = a^2-(b^2-6b+9)#
#color(white)(a^2-b^2+6b-9) = a^2-(b-3)^2#
#color(white)(a^2-b^2+6b-9) = (a-(b-3))(a+(b-3))#
#color(white)(a^2-b^2+6b-9) = (a-b+3)(a+b-3)#