How do you factor a^3b^6-b^3a3b6b3?

2 Answers
May 16, 2018

b^3(a^3b^3 - b^3)b3(a3b3b3)

Explanation:

a^3b^6 - b^3a3b6b3

b^6 = b^3 cdot b^3b6=b3b3

(a^3b^3b^3 - b^3)(a3b3b3b3)

factorizing;

b^3(a^3b^3 - b^3)b3(a3b3b3)

May 16, 2018

a^3b^6-b^3=b^3(ab-1)(a^2b^2+ab+1)a3b6b3=b3(ab1)(a2b2+ab+1)

Explanation:

We want to simplify a^3b^6-b^3a3b6b3. The first thing to do is to factor out b^3b3 to give b^3(a^3b^3-1)b3(a3b31).

If we look carefully, we can see that b^3(a^3b^3-1)=b^3((ab)^3-1^3)b3(a3b31)=b3((ab)313). So now we can use a formula to simplify even more:

a^3-b^3=(a-b)(a^2+ab+b^3)a3b3=(ab)(a2+ab+b3)

So

b^3(a^3b^3-1)=b^3((ab)^3-1^3)=b3(a3b31)=b3((ab)313)=
b^3((ab)-1)((ab)^2+2(ab)+1^2)=b^3(ab-1)(a^2b^2+ab+1)b3((ab)1)((ab)2+2(ab)+12)=b3(ab1)(a2b2+ab+1)