How do you factor #m^3 + (m+3)^3#?

2 Answers
May 21, 2018

#(2m+3)*(m^2+3m+9)#

Explanation:

Using #(a+b)^3=a^3+3a^2b+3ab^2+b^3#

May 21, 2018

#(2m+3)(m^2+3m+9)#

Explanation:

#"this is a "color(blue)"sum of cubes"#

#"which factors in general as"#

#•color(white)(x)a^3+b^3=(a+b)(a^2-ab+b^2)#

#"here "a=m" and "b=m+3#

#rArrm^3+(m+3)^3#

#=(m+m+3)(m^2-m(m+3)+(m+3)^2)#

#=(2m+3)(m^2-m^2-3m+m^2+6m+9)#

#=(2m+3)(m^2+3m+9)#