How do you factor Sin^3X - Cos^3X?

1 Answer
Apr 21, 2017

The answer is =1/2(sinx-cosx)(2+sin(2x))

Explanation:

We apply

a^3-b^3=(a-b)(a^2+ab+b^2)

Here,

a=sinx

and

b=cosx

So,

sin^3x-cos^3x=(sinx-cosx)(sin^2x+sinxcosx+cos^2x)

But,

sin^2x+cos^2x=1

Therefore,

sin^3x-cos^3x=(sinx-cosx)(1+sinxcosx)

=(sinx-cosx)(1+(sin2x)/2)

=1/2(sinx-cosx)(2+sin(2x))