How do you factor the trinomial #x^2+12x+12x+11#?
2 Answers
Oct 26, 2017
Explanation:
Oct 26, 2017
Explanation:
#"simplify by collecting like terms"#
#rArrx^2+12x+12x+11#
#=x^2+24x+11#
#"this does not factor with integer coefficients so"#
#"find the roots using the "color(blue)"quadratic formula"#
#x^2+24x+11=0#
#"with "a=1,b=24,c=11#
#rArrx=(-24+-sqrt(24^2-(4xx1xx11)))/2#
#color(white)(rArrx)=(-24+-sqrt(576-44))/2#
#color(white)(rArrx)=(-24+-sqrt532)/2#
#color(white)(rArrx)=(-24+-2sqrt133)/2=-12+-sqrt133#
#rArrx^2+24x+11#
#=(x-(-12+sqrt133))(x-(-12-sqrt133))#
#=(x+12-sqrt133)(x+12+sqrt133)#