How do you factor z^6-64p^6z664p6?

1 Answer
Mar 10, 2016

z^6-64p^6=(z-2p)(z^2+2pz+4p^2)(z+2p)(z^2-2pz+4p^2)z664p6=(z2p)(z2+2pz+4p2)(z+2p)(z22pz+4p2)

Explanation:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

The difference of cubes identity can be written:

a^3-b^3 = (a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

The sum of cubes identity can be written:

a^3+b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

Hence:

z^6-64p^6z664p6

=(z^3)^2-(8p^3)^2=(z3)2(8p3)2

=(z^3-8p^3)(z^3+8p^3)=(z38p3)(z3+8p3)

=(z^3-(2p)^3)(z^3+(2p)^3)=(z3(2p)3)(z3+(2p)3)

=(z-2p)(z^2+2pz+4p^2)(z+2p)(z^2-2pz+4p^2)=(z2p)(z2+2pz+4p2)(z+2p)(z22pz+4p2)