How do you find a_1 for each geometric series S_n=33, a_n=48, r=-2?

1 Answer
Dec 3, 2017

a_1=3

Explanation:

For geometric series, S_n=a_1*(1-r^n)/(1-r) and a_n=a_1*r^(n-1)

Hence a_1*[1-(-2)^n]/[1-(-2)]=33 or a_1*(1-r^n)=99 and a_1*(-2)^(n-1)=48

After dividing first equation to second one,

[a_1*(1-(-2)^n)]/[a_1*(-2)^(n-1)]=99/48

(1-(-2)^n)/(-2)^(n-1)=33/16

16*(1-(-2)^n)=33*(-2)^(n-1)

16-16*(-2)^n=-33/2*(-2)^n

-1/2*(-2)^n=16

(-2)^n=-32, so n=5

Thus,

a_1*(-2)^(5-1)=48

16a_1=48, so a_1=3