How do you find a1 for the geometric series given Sn=688, an=16, r=-1/2?

1 Answer
Oct 16, 2016

Sn=688aaaan=16aaar=12

Find a1

First use the formula for a geometric sequence.

an=a1(rn1)

16=a1(12)n1

a1=16(12)n1aaaEquation 1

Next use the formula for the sum of a geometric series.

Sn=a11rn1r

688=a11(12)n112

68832=a1(1(12)n)

68832=16(12)n1(1(12)n)aaSubstitute equation aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 1 for a1

68832=16(12)n116(12)n(12)n1

68832=16(12)n116(12)n(n1)

68832=16(12)n116(12)

1032=16(12)n10+8

1024=16(12)n1

(12)n1=161024

(12)n1=164

(12)6=164

n1=6

n=7

Using an=a1(rn1)

16=a1(12)71

16=a1(164)

a1=1664=1024