Sn=688aaaan=16aaar=−12
Find a1
First use the formula for a geometric sequence.
an=a1(rn−1)
16=a1(−12)n−1
a1=16(−12)n−1aaaEquation 1
Next use the formula for the sum of a geometric series.
Sn=a11−rn1−r
688=a11−(−12)n1−−12
688⋅32=a1(1−(−12)n)
688⋅32=16(−12)n−1⋅(1−(−12)n)aaSubstitute equation aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 1 for a1
688⋅32=16(−12)n−1−16⋅(−12)n(−12)n−1
688⋅32=16(−12)n−1−16(−12)n−(n−1)
688⋅32=16(−12)n−1−16(−12)
1032=16(−12)n−10+8
1024=16(−12)n−1
(−12)n−1=161024
(−12)n−1=164
(−12)6=164
n−1=6
n=7
Using an=a1(rn−1)
16=a1(−12)7−1
16=a1(164)
a1=16⋅64=1024