How do you find a possible value for a if the points (-2,a), (6,1)has a distance of #d=4sqrt5#?
2 Answers
Explanation:
#"using the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(6,1)" and "(x_2,y_2)=(-2,a)#
#d=sqrt((-2-6)^2+(a-1)^2)=4sqrt5#
#rArrsqrt(64+(a-1)^2)=4sqrt5#
#color(blue)"square both sides"#
#rArr64+(a-1)^2=80#
#"subtract 64 from both sides"#
#(a-1)^2=16#
#color(blue)"take the square root of both sides"#
#rArra-1=+-sqrt16larrcolor(blue)"note plus or minus"#
#rArra=1+-4#
#rArra=1-4=-3" or "a=1+4=5#
Possible values of
Explanation:
Distance between two points
Distance between two points
sides we get ,
Possible values of