How do you find a power series representation for f(x)= 1/(1+4x^2)f(x)=11+4x2 and what is the radius of convergence?
1 Answer
Sep 28, 2015
Explanation:
Consider the power series:
sum_(n=0)^oo (-4x^2)^n = 1 - 4x^2 + 16x^4 - 64x^6 +...
Then:
(1+4x^2)(sum_(n=0)^oo (-4x^2)^n)
=sum_(n=0)^oo (-4x^2)^n + 4x^2 sum_(n=0)^oo (-4x^2)^n
=sum_(n=0)^oo (-4x^2)^n - sum_(n=1)^oo (-4x^2)^n
=(-4x^2)^0 = 1
provided the sum
So
sum_(n=0)^oo (-4x^2)^n = 1/(1+4x^2) = f(x)
This is a geometric sequence, so will converge if the common ratio has absolute value
That is:
abs(-4x^2) < 1 , sox^2 < 1/4 , soabs(x) < 1/2
In general
1/(1+a) = sum_(n=0)^oo (-a)^n
which converges if