How do you find a power series representation for f(x)= 1/(1+4x^2)f(x)=11+4x2 and what is the radius of convergence?

1 Answer
Sep 28, 2015

f(x) = sum_(n=0)^oo (-4x^2)^nf(x)=n=0(4x2)n with radius of convergence 1/212

Explanation:

Consider the power series:

sum_(n=0)^oo (-4x^2)^n = 1 - 4x^2 + 16x^4 - 64x^6 +...

Then:

(1+4x^2)(sum_(n=0)^oo (-4x^2)^n)

=sum_(n=0)^oo (-4x^2)^n + 4x^2 sum_(n=0)^oo (-4x^2)^n

=sum_(n=0)^oo (-4x^2)^n - sum_(n=1)^oo (-4x^2)^n

=(-4x^2)^0 = 1

provided the sum sum_(n=0)^oo (-4x^2)^n converges.

So

sum_(n=0)^oo (-4x^2)^n = 1/(1+4x^2) = f(x)

This is a geometric sequence, so will converge if the common ratio has absolute value < 1.

That is:

abs(-4x^2) < 1, so x^2 < 1/4, so abs(x) < 1/2

In general

1/(1+a) = sum_(n=0)^oo (-a)^n

which converges if abs(a) < 1.