How do you find a power series representation for f(x)= 1/(1+x) and what is the radius of convergence?
1 Answer
Oct 5, 2015
sum_(n=0)^oo (-1)^n x^n with radius of convergence1
Explanation:
Start writing out a power series which when multiplied by
1 = (1+x)(1-x+x^2-x^3+x^4-...)
We choose each successive term to cancel out the extraneous term left over by the previous ones.
Then writing it out formally...
(1+x) sum_(n=0)^N (-1)^n x^n
= sum_(n=0)^N (-1)^n x^n + x sum_(n=0)^N (-1)^n x^n
= sum_(n=0)^N (-1)^n x^n - sum_(n=1)^(N+1) (-1)^n x^n
= (-1)^0x^0 - (-1)^(N+1)x^(N+1) = 1 - (-x)^(N+1)
So if
(1+x) sum_(n=0)^oo (-1)^n x^n = 1
Conversely, if
So the radius of convergence is