How do you find a power series representation for x^2 arctan(x^3 and what is the radius of convergence?

1 Answer
Mar 17, 2017

x^2arctan(x^3)=sum_(n=0)^oo(-1)^n/(2n+1)x^(6n+5)=x^5-x^11/3+x^17/5+...

The radius of convergence is R=1.

Explanation:

Start with the well known Maclaurin series:

1/(1-x)=sum_(n=0)^oox^n

Replacing x with -x^2:

1/(1+x^2)=sum_(n=0)^oo(-x^2)^n=sum_(n=0)^oo(-1)^nx^(2n)

Integrating to get arctan(x):

arctan(x)=intdx/(1+x^2)=sum_(n=0)^oo(-1)^nintx^(2n)dx

arctan(x)=C+sum_(n=0)^oo(-1)^nx^(2n+1)/(2n+1)

Letting x=0 shows C=0:

arctan(x)=sum_(n=0)^oo(-1)^n/(2n+1)x^(2n+1)

Replacing x with x^3:

arctan(x^3)=sum_(n=0)^oo(-1)^n/(2n+1)(x^3)^(2n+1)=sum_(n=0)^oo(-1)^n/(2n+1)x^(6n+3)

Multiplying by x^2, which can be brought into the series:

x^2arctan(x^3)=x^2sum_(n=0)^oo(-1)^n/(2n+1)x^(6n+3)=color(blue)(sum_(n=0)^oo(-1)^n/(2n+1)x^(6n+5)

This is the Maclaurin series for x^2arctan(x^3). To find its radius of convergence, find the ratio abs(a_(n+1)/a_n) where a_n=(-1)^n/(2n+1)x^(6n+5):

abs(a_(n+1)/a_n)=abs(((-1)^(n+1)/(2(n+1)+1)x^(6(n+1)+5))/((-1)^n/(2n+1)x^(6n+5)))=abs(((-1)^(n+1)/(2n+3)x^(6n+11))/((-1)^n/(2n+1)x^(6n+5)))

abs(a_(n+1)/a_n)=abs((-1)^(n+1)/(-1)^n((2n+1)/(2n+3))x^(6n+11)/x^(6n+5))=abs(x^6((2n+1)/(2n+3)))

Through the ratio test, we know the series converges when lim_(nrarroo)abs(a_(n+1)/a_n)<1. Finding the limit:

lim_(nrarroo)abs(a_(n+1)/a_n)=lim_(nrarroo)abs(x^6((2n+1)/(2n+3)))=absx^6lim_(nrarroo)abs((2n+1)/(2n+3))

The internal limit is 1. We want this when it's less than 1:

absx^6<1" "=>" "absx<1

Thus the radius of convergence is color(blue)(R=1.