How do you find a trigonometric form of a complex number?

1 Answer
Feb 22, 2015

Let z=x+iyz=x+iy a complex number in algebraic form.

z=r(cosphi+isinphi)z=r(cosϕ+isinϕ) is its trigonometric form, where:

r=sqrt(x^2+y^2)r=x2+y2 is the modulus of the number and

  • if x>0x>0

phi=arctan(y/x)ϕ=arctan(yx) ,

  • if x<0x<0

phi=arctan(y/x)+piϕ=arctan(yx)+π,

  • if x=0x=0 and y>0y>0

phi=pi/2ϕ=π2,

  • if x=0x=0 and y<0y<0

phi=3/2piϕ=32π

  • if x=y=0x=y=0

It's all zero!