How do you find a unit vector in the direction of v: v = - 5i + 2j?

1 Answer
Sep 22, 2016

-5/sqrt29i+2/sqrt29j529i+229j.

Explanation:

A unit vector in the direction of vecvv, is denoted by hat(vecv)ˆv,

and, is defined by,

hat(vecv)=vecv/||vecv||", provided, "vecvnevec0ˆv=vv, provided, v0.

Here, vecv=-5i+2j=(-5,2) nevec0v=5i+2j=(5,2)0

rArr ||vecv||=sqrt{(-5)^2+(2)^2}=sqrt29v=(5)2+(2)2=29.

:. hat(vecv)=-5/sqrt29i+2/sqrt29j.