Calling vec u = {2,0,1,-4} and vec v = {2,3,0,1}
we need a vector
vec x = {a,b,c,d}
such that
<< vec u, vec x >> = 0
<< vec v, vec x >> = 0
norm (vec x) = 1
Solving
{
(2 a + c - 4 d = 0),
(2 a + 3 b + d = 0),
(a^2 + b^2 + c^2 + d^2 = 1)
:}
for a,b,c we obtain
((a = 1/7 (10 d - 3 sqrt[1 - 6 d^2])),( b =
1/7 (-9 d + 2 sqrt[1 - 6 d^2])), (c = 2/7 (4 d + 3 sqrt[1 - 6 d^2])))
or
((a = 1/7 (10 d + 3 sqrt[1 - 6 d^2])),( b =
1/7 (-9 d - 2 sqrt[1 - 6 d^2])), (c = 2/7 (4 d - 3 sqrt[1 - 6 d^2])))
then if we choose 1-6d^2 ge 0 or -1/sqrt(6) le d le 1/sqrt(6) we will have solutions to this problem