How do you find all solutions to x^4+(1+i)=0x4+(1+i)=0?

1 Answer
Sep 28, 2016

x = root(8)(2)e^(i(5/16pi+k pi/2))x=82ei(516π+kπ2) for k = 0,pm1,pm2,cdotsk=0,±1,±2,

Explanation:

x^4 = -(1+i)x4=(1+i)

Using de Moivre's identity

e^(iphi)=cosphi+isinphieiϕ=cosϕ+isinϕ we have

-(1+i) = -sqrt(2)(1/sqrt(2)+i/sqrt(2))=-sqrt(2)(cos phi_0+i sin phi_0)(1+i)=2(12+i2)=2(cosϕ0+isinϕ0)

with phi_0 = pi/4+2kpi, k = 0,pm1,pm2,cdotsϕ0=π4+2kπ,k=0,±1,±2,

but

-sqrt(2)(cos phi_0+i sin phi_0) = sqrt(2)e^(ipi)e^(i(pi/4+2kpi)) = sqrt(2)e^(i(5/4pi+2kpi)) 2(cosϕ0+isinϕ0)=2eiπei(π4+2kπ)=2ei(54π+2kπ)

(we used e^(ipi)+1=0eiπ+1=0 after Euler
https://en.wikipedia.org/wiki/Leonhard_Euler)

x^4 = sqrt(2)e^(i(5/4pi+2kpi)) x4=2ei(54π+2kπ)

finally

x = root(8)(2)e^(i(5/16pi+k pi/2))x=82ei(516π+kπ2)

for k = 0,pm1,pm2,cdotsk=0,±1,±2,