How do you find all solutions to #x^6-64i=0#?

1 Answer
Aug 20, 2016

Use de Moivre's theorem to find all #6# Complex roots.

Explanation:

Given:

#x^6-64i = 0#

Add #64i# to both sides to get:

#x^6 = 64i#

#color(white)(x^6) = 2^6(0 + 1i)#

#color(white)(x^6) = 2^6(cos (pi/2) + i sin (pi/2))#

From de Moivre's theorem, we have:

#(cos theta + i sin theta)^n = cos n theta + i sin n theta#

Hence principal root:

#x_1 = root(6)(64i) = 2(cos (pi/12) + i sin (pi/12))#

The other #5# roots can be found by multiplying by the primitive Complex #6#th root of #1#, i.e. #(cos (pi/3) + i sin (pi/3))# to find:

#x_2 = 2(cos ((5pi)/12) + i sin ((5pi)/12))#

#x_3 = 2(cos ((9pi)/12) + i sin ((9pi)/12))#

#x_4 = 2(cos ((13pi)/12) + i sin ((13pi)/12))#

#x_5 = 2(cos ((17pi)/12) + i sin ((17pi)/12))#

#x_6 = 2(cos ((21pi)/12) + i sin ((21pi)/12))#

These trigonometric values can be expressed in terms of square roots:

#cos (pi/12) = 1/4(sqrt(6)+sqrt(2)) " " sin (pi/12) = 1/4(sqrt(6)-sqrt(2))#

#cos ((5pi)/12) = 1/4(sqrt(6)-sqrt(2)) " " sin ((5pi)/12) = 1/4(sqrt(6)+sqrt(2))#

#cos ((9pi)/12) = -sqrt(2)/2 " " sin ((9pi)/12) = sqrt(2)/2#

#cos ((13pi)/12) = -1/4(sqrt(6)+sqrt(2)) " " sin ((13pi)/12) = -1/4(sqrt(6)-sqrt(2))#

#cos ((17pi)/12) = -1/4(sqrt(6)-sqrt(2)) " " sin ((17pi)/12) = -1/4(sqrt(6)+sqrt(2))#

#cos ((21pi)/12) = sqrt(2)/2 " " sin ((21pi)/12) = -sqrt(2)/2#

So here are the #6# roots in the Complex plane:

graph{((x-1/2(sqrt(6)+sqrt(2)))^2 + (y-1/2(sqrt(6)-sqrt(2)))^2 - 0.01)((x-1/2(sqrt(6)-sqrt(2)))^2 + (y-1/2(sqrt(6)+sqrt(2)))^2 - 0.01)((x+sqrt(2))^2+(y-sqrt(2))^2-0.01)((x+1/2(sqrt(6)+sqrt(2)))^2 + (y+1/2(sqrt(6)-sqrt(2)))^2 - 0.01)((x+1/2(sqrt(6)-sqrt(2)))^2 + (y+1/2(sqrt(6)+sqrt(2)))^2 - 0.01)((x-sqrt(2))^2+(y+sqrt(2))^2-0.01) = 0 [-5, 5, -2.5, 2.5]}