How do you find all the asymptotes for function f(x)= (3e^(x))/(2-2e^(x))?

1 Answer
Jul 15, 2015

Vertical asymptote: x=0
Horizontal asymptotes:
y=0
y=-3/2

Explanation:

You start by checking which values of x make your denominator equal to zero (you do not want this!).
To avoid zero in the denominator x must be different from zero or:
x!=0 this means that the vertical line of equation x=0 will be a "forbidden zone", i.e., a vertical asymptote.

To see if we have horizontal asymptotes we check the behaviour of your function for x very large or, using the idea of Limit :

1] x->+oo
lim_(x->+oo) (3e^x)/(2-2e^x)=lim_(x->+oo) (3e^x)/(e^x(2/e^x-2))=
=lim_(x->+oo) (3cancel(e^x))/(cancel(e^x)(2/e^x-2))= and when x->+oo:
=lim_(x->+oo) 3/(-2)=-3/2 (where I used the fact that 1/e^oo=1/oo)
So, the horizontal asymptote will be the horizontal line of equation: y=-3/2.

2] x->-oo
lim_(x->-oo) (3e^x)/(2-2e^x)=lim_(x->-oo) (3e^x)/(e^x(2/e^x-2))=
=lim_(x->-oo) (3cancel(e^x))/(cancel(e^x)(2/e^x-2))= and when x->-oo:
=lim_(x->-oo) 3/(2/e^x-2)=0 (where I used the fact that 1/e^-oo=e^oo).
So, the horizontal asymptote will be the horizontal line of equation: y=0.

Graphically:
graph{(3e^x)/(2-2e^x) [-11.25, 11.25, -5.625, 5.625]}