How do you find all the asymptotes for function y=(x^2-4)/(x)?

1 Answer

The vertical asymptote is x=0 and oblique asymptote
y=x

Explanation:

A line x=a is a vertical asymptote of a function f(x) if

lim_(x->a)f(x)=+-oo

A line y = b is a horizontal asymptote of a function f(x) if

lim_(x->+-oo)=b

An oblique asymptote for a function f(x) has the formula

y=cx+d

where

c=lim_(x->oo)f(x)/x and d=lim_(x->oo)(f(x)-cx)

Hence we have that

f(x)->+-oo , x->0

and c=limf(x)/x=lim(x^2-4)/x^2=1

d=lim((x^2-4)/x-x)=0

Hence x=0 and y=x