How do you find all the real and complex roots of #3x^2 - x + 2 = 0#? Precalculus Complex Zeros Complex Conjugate Zeros 1 Answer maganbhai P. Aug 8, 2018 #x=(1+sqrt23*i)/6 or x=(1-sqrt23*i)/6# Explanation: Here , #3x^2-x+2=0# Comparing with #ax^2+bx+c=0# #a=3,b=-1 and c=2# #:.Delta=b^2-4ac=(-1)^2-4(3)(2)# #:.color(red)(Delta=1-24=-23 < 0=>ul(x !inRR and x inCC)# #:.Delta=23(-1)# #:.Delta=23i^2to[because i^2=-1]# #:.sqrtDelta=sqrt23*i# So, #x=(-b+-sqrtDelta)/(2a)=(1+-sqrt23*i)/(2xx3)# #:.x=(1+-sqrt23*i)/6# Hence , #x=(1+sqrt23*i)/6 or x=(1-sqrt23*i)/6# Answer link Related questions What is a complex conjugate? How do I find a complex conjugate? What is the conjugate zeros theorem? How do I use the conjugate zeros theorem? What is the conjugate pair theorem? How do I find the complex conjugate of #10+6i#? How do I find the complex conjugate of #14+12i#? What is the complex conjugate for the number #7-3i#? What is the complex conjugate of #3i+4#? What is the complex conjugate of #a-bi#? See all questions in Complex Conjugate Zeros Impact of this question 1478 views around the world You can reuse this answer Creative Commons License