How do you find an equation for the tangent line to x^4=y^2+x^2x4=y2+x2 at (2, sqrt12)(2,12)?

2 Answers
Jan 18, 2017

y=7/sqrt3x-8/sqrt3y=73x83 or sqrt3y=7x-83y=7x8

Explanation:

x^4=y^2+x^2x4=y2+x2
y^2=x^4-x^2y2=x4x2
2y(dy/dx)=4x^3-2x2y(dydx)=4x32x
dy/dx=(4x^3-2x)/(2y)dydx=4x32x2y

at (2,sqrt12)(2,12)
dy/dx=(4(2^3)-2(2))/(2sqrt12)dydx=4(23)2(2)212
dy/dx=(32-4)/(4sqrt3)dydx=32443
dy/dx=28/(4sqrt3)dydx=2843
dy/dx=7/sqrt3dydx=73

The equation of tangent, y-y_1=m(x-x_1)yy1=m(xx1) where m=7/sqrt3, y_1=sqrt12 and x_1=2m=73,y1=12andx1=2

y-sqrt12=7/sqrt3(x-2)y12=73(x2)
y-sqrt12=7/sqrt3x-14/sqrt3y12=73x143
y=7/sqrt3x-14/sqrt3+sqrt12y=73x143+12
y=7/sqrt3x-14/sqrt3+sqrt36/sqrt3y=73x143+363
y=7/sqrt3x-14/sqrt3+6/sqrt3y=73x143+63
y=7/sqrt3x-8/sqrt3y=73x83 or
sqrt3y=7x-83y=7x8

Jan 18, 2017

7x-sqrt3y-8=07x3y8=0. See tangent-inclusive graph. The graph is not to scale. There is contraction in the y-direction.

Explanation:

Differentiating,

4x^3=2x+2yy', giving y'=7/sqrt3, at P(2, sqrt12).

The equation to the tangent at P is

y-sqrt13=7/sqrt3(x-2), giving

7x-sqrt3y-8=0.

graph{(x^2-sqrt(x^2+y^2))(7x-sqrt3 y-8.2)=0 [-7, 7, -35, 35]}