How do you find an equation of the tangent line to the curve at the given point y=secx2cosx and (π3,1)?

1 Answer
Apr 25, 2018

y=33xπ3+1

Explanation:

the slope of the tangent m =dydx at x=π3

dydx=secxtanx+2sinx

dydx(x=π3)=sec(π3)tan(π3)+2sin(π3)

××××x=2×3+2×32

××××x=23+3=33

y1=33(xπ3)

y=33xπ3+1equation of tangent