How do you find an equation of the tangent line to the curve at the given point y=secx−2cosx and (π3,1)?
1 Answer
Apr 25, 2018
Explanation:
the slope of the tangent m =dydx at x=π3
⇒dydx=secxtanx+2sinx
dydx(x=π3)=sec(π3)tan(π3)+2sin(π3)
××××x=2×√3+2×√32
××××x=2√3+√3=3√3
⇒y−1=3√3(x−π3)
⇒y=3√3x−π√3+1←equation of tangent