How do you find an equation of the tangent line to the curve at the given point y=secx - 2cosx and (pi/3, 1)?

1 Answer
Apr 25, 2018

y=3sqrt3x-pisqrt3+1

Explanation:

"the slope of the tangent m "=dy/dx" at "x=pi/3

rArrdy/dx=secxtanx+2sinx

dy/dx(x=pi/3)=sec(pi/3)tan(pi/3)+2sin(pi/3)

color(white)(xxxxxxxxx)=2xxsqrt3+2xxsqrt3/2

color(white)(xxxxxxxxx)=2sqrt3+sqrt3=3sqrt3

rArry-1=3sqrt3(x-pi/3)

rArry=3sqrt3x-pisqrt3+1larrcolor(red)"equation of tangent"