How do you find arcsin x = arccos (x/2)?

1 Answer
Oct 4, 2016

x=2/sqrt5" is the Soln."x=25 is the Soln.

Explanation:

Let, arc sinx=arc cos (x/2)= theta rArr sintheta=x, costheta=x/2.arcsinx=arccos(x2)=θsinθ=x,cosθ=x2.

But, sin^2theta+cos^2theta=1 :. x^2+(x/2)^2=1, or, (5x^2)/4=1.

:. x=+-2/sqrt5

Verification :

x=-2/sqrt5

rArr arcsin(x)=arc sin(-2/sqrt5)=theta in [-pi/2,pi/2].

rArr sintheta=-2/sqrt5 lt0 rArr theta in [-pi/2,0] :.costheta gt0, and,

costheta=+sqrt(1-sin^2theta)=sqrt(1-4/5)=1/sqrt5.

Now,-pi/2lethetale0:.-pi/2+piletheta+pile0+pi, i.e.,

pi/2letheta+pilepi, or, (pi+theta) in [0,pi]

Thus,

cos(pi+theta)=-costheta=-1/sqrt5=x/2, &, (pi+theta) in [0,pi].

Therefore, arc cos(x/2)=theta+pinetheta=arc (sinx).

Hence, x=-2/sqrt5" is not the Soln."

On the above lines, we can verify that x=2/sqrt5" is the Soln."