Let, #arc sinx=arc cos (x/2)= theta rArr sintheta=x, costheta=x/2.#
But, #sin^2theta+cos^2theta=1 :. x^2+(x/2)^2=1, or, (5x^2)/4=1.#
#:. x=+-2/sqrt5#
Verification :
#x=-2/sqrt5#
#rArr arcsin(x)=arc sin(-2/sqrt5)=theta in [-pi/2,pi/2].#
#rArr sintheta=-2/sqrt5 lt0 rArr theta in [-pi/2,0] :.costheta gt0,# and,
#costheta=+sqrt(1-sin^2theta)=sqrt(1-4/5)=1/sqrt5.#
Now,#-pi/2lethetale0:.-pi/2+piletheta+pile0+pi#, i.e.,
#pi/2letheta+pilepi, or, (pi+theta) in [0,pi]#
Thus,
#cos(pi+theta)=-costheta=-1/sqrt5=x/2, &, (pi+theta) in [0,pi].#
Therefore, #arc cos(x/2)=theta+pinetheta=arc (sinx).#
Hence, #x=-2/sqrt5" is not the Soln."#
On the above lines, we can verify that #x=2/sqrt5" is the Soln."#