How do you find #cos(sin^-1(sqrt2/2)+cos^-1(3/5))#?

1 Answer
Oct 1, 2016

#cos(sin^(-1)(sqrt(2)/2) + cos^(-1)(3/5)) = -sqrt(2)/10#

Explanation:

Let #alpha = sin^(-1)(sqrt(2)/2)# and #beta = cos^(-1)(3/5)#

Then:

#sin alpha = sqrt(2)/2#

#cos alpha = sqrt(1-sin^2 alpha) = sqrt(1-1/2) = sqrt(1/2) = sqrt(2)/2#

#sin beta = sqrt(1-cos^2 beta) = sqrt(1-3^2/5^2) = sqrt(1-9/25) = sqrt(16/25) = 4/5#

#cos beta = 3/5#

Alternatively you could pick out these values from the #1:1:sqrt(2)# and #3:4:5# right angled triangles...

enter image source here

#alpha = pi/4#, #sin alpha = sin beta = 1/sqrt(2) = sqrt(2)/2#

enter image source here

#beta = B#, #sin beta = 4/5#, #cos beta = 3/5#

Then using the formula for #cos# of a sum of angles we have:

#cos (alpha+beta) = cos alpha cos beta - sin alpha sin beta#

#color(white)(cos (alpha+beta)) = sqrt(2)/2 3/5 - sqrt(2)/2 4/5#

#color(white)(cos (alpha+beta)) = -sqrt(2)/10#