How do you find cos(sin1xcos1y)?

1 Answer
Sep 30, 2016

The Reqd. value=y1x2+x1y2.

Explanation:

Let, sin1x=α,and,cos1y=β

We will consider only one case, namely, 0x,y1.

Hence, 0α,βπ2.

Also, sinα=x,cosβ=y.

Now, reqd. value=cos(sin1xcos1y)=cos(αβ)

=cosαcosβ+sinαsinβ

=ycosα+xsinβ.

Now, sinα=xcosα=±1sin2α=±1x2

But, 0απ2cosα=+1x2

Similarly, from cosβ=y, we get, sinβ=+1y2.Hence,

The Reqd. value=y1x2+x1y2.

We can deal with the other cases, like, 1x0, etc.,