How do you find (d^2y)/(dx^2)d2ydx2 for 5=4x^3-4y^25=4x34y2?

1 Answer
Nov 4, 2016

(d^2y)/(dx^2)=(12xy^2-9x^4)/(4y^3)d2ydx2=12xy29x44y3

Explanation:

5=4x^3-4y^25=4x34y2

0=12x^2-8y dy/dx0=12x28ydydx

8ydy/dx=12x^28ydydx=12x2

dy/dx=(12x^2)/(8y)=(3x^2)/(2y)dydx=12x28y=3x22y

To find the second derivative use the quotient rule

(d^2y)/(dx^2)=(2y*6x-3x^2*2dy/dx)/(4y^2)d2ydx2=2y6x3x22dydx4y2

(d^2y)/(dx^2)=(2(6xy-3x^2dy/dx))/(4y^2)d2ydx2=2(6xy3x2dydx)4y2

(d^2y)/(dx^2)=(6xy-3x^2*(3x^2)/(2y))/(2y^2)d2ydx2=6xy3x23x22y2y2

(d^2y)/(dx^2)=(6xy-(9x^4)/(2y))/(2y^2)d2ydx2=6xy9x42y2y2

(d^2y)/(dx^2)=((12xy^2-9x^4)/(2y))/(2y^2)d2ydx2=12xy29x42y2y2

(d^2y)/(dx^2)=((12xy^2-9x^4)/(2y))*(1/(2y^2))d2ydx2=(12xy29x42y)(12y2)

(d^2y)/(dx^2)=(12xy^2-9x^4)/(4y^3)d2ydx2=12xy29x44y3