5=4x^3-4y^25=4x3−4y2
0=12x^2-8y dy/dx0=12x2−8ydydx
8ydy/dx=12x^28ydydx=12x2
dy/dx=(12x^2)/(8y)=(3x^2)/(2y)dydx=12x28y=3x22y
To find the second derivative use the quotient rule
(d^2y)/(dx^2)=(2y*6x-3x^2*2dy/dx)/(4y^2)d2ydx2=2y⋅6x−3x2⋅2dydx4y2
(d^2y)/(dx^2)=(2(6xy-3x^2dy/dx))/(4y^2)d2ydx2=2(6xy−3x2dydx)4y2
(d^2y)/(dx^2)=(6xy-3x^2*(3x^2)/(2y))/(2y^2)d2ydx2=6xy−3x2⋅3x22y2y2
(d^2y)/(dx^2)=(6xy-(9x^4)/(2y))/(2y^2)d2ydx2=6xy−9x42y2y2
(d^2y)/(dx^2)=((12xy^2-9x^4)/(2y))/(2y^2)d2ydx2=12xy2−9x42y2y2
(d^2y)/(dx^2)=((12xy^2-9x^4)/(2y))*(1/(2y^2))d2ydx2=(12xy2−9x42y)⋅(12y2)
(d^2y)/(dx^2)=(12xy^2-9x^4)/(4y^3)d2ydx2=12xy2−9x44y3