How do you find (d^2y)/(dx^2)d2ydx2 for 5y^2+2=5x^25y2+2=5x2?

2 Answers
Nov 25, 2016

(d^2y)/dx^2=(y^2-x^2)/y^3d2ydx2=y2x2y3

Explanation:

To find (d^2y)/(dx^2)d2ydx2 is to find the second differentiation of the
" "
given expression .
" "
5y^2+2=5x^25y2+2=5x2
" "
d/dx(5y^2+2)=d/dx(5x^2)ddx(5y2+2)=ddx(5x2)
" "
rArr10y(dy/dx)+0=10x10y(dydx)+0=10x
" "
rArr10y(dy/dx)=10x10y(dydx)=10x
" "
rArrdy/dx=(10x)/(10y)dydx=10x10y
""
Therefore,
" "
color(blue)(dy/dx=x/ydydx=xy
" "
Let us compute (d^2y)/dx^2d2ydx2
" "
(d^2y)/dx^2=d/dx(dy/dx)d2ydx2=ddx(dydx)
" "
(d^2y)/dx^2=d/dx(x/y)d2ydx2=ddx(xy)
" "
Differentiating x/yxy is determined by applying the quotient rule differentiation.
" "
(d^2y)/dx^2=((dx/dx)xxy-(dy/dx)xx x)/y^2d2ydx2=(dxdx)×y(dydx)×xy2
" "
(d^2y)/dx^2=(y-xcolor(blue)(dy/dx))/y^2d2ydx2=yxdydxy2
" "
(d^2y)/dx^2=(y-x(x/y))/y^2d2ydx2=yx(xy)y2
" "
(d^2y)/dx^2=(y-x^2/y)/y^2d2ydx2=yx2yy2
" "
Therefore,
" "
(d^2y)/dx^2=(y^2-x^2)/y^3d2ydx2=y2x2y3

Nov 25, 2016

The answer is =-2/5((5x^2-2)/5)^(-3/2)=25(5x225)32

Explanation:

Let's do the implicit differentiation

5y^2+2=5x^25y2+2=5x2

10ydy/dx+0=10x10ydydx+0=10x

dy/dx=x/ydydx=xy

This is of the form u/vuv

(u/v)'=(u'v-uv')/v^2

So, (d^2y)/dx^2=(x/y)'=(y-xdy/dx)/y^2

=(y-x^2/y)/y^2=(y^2-x^2)/y^3

5y^2=5x^2-2

y^2=(5x^2-2)/5

y^3=((5x^2-2)/5)^(3/2)

Therefore, (d^2y)/dx^2=((5x^2-2)/5-x^2)/((5x^2-2)/5)^(3/2)

=-2/(5((5x^2-2)/5)^(3/2))

=-2/5((5x^2-2)/5)^(-3/2)