How do you find (d^2y)/(dx^2)d2ydx2 for x^2+4y^2=5x2+4y2=5?

1 Answer
Nov 6, 2016

(d^2y)/(dx^2)[x^2+4y^2=5] = (-5)/(16y^3)d2ydx2[x2+4y2=5]=516y3

Explanation:

First find (dy)/(dx)dydx by implicitly differentiating x^2+4y^2=5x2+4y2=5:
x^2+4y^2=5x2+4y2=5
2x+8y((dy)/(dx))=02x+8y(dydx)=0
((dy)/(dx))(8y) = -2x(dydx)(8y)=2x
(dy)/(dx) = (-2x)/(8y)dydx=2x8y
(dy)/(dx) = (-x)/(4y)dydx=x4y

Now implicitly differentiate (dy)/(dx)dydx:

Use the quotient rule:
(d^2y)/(dx^2) = [(4y)(-1)-(-x)(4(dy/dx))]/((4y)^2)d2ydx2=(4y)(1)(x)(4(dydx))(4y)2

Simplify:
(d^2y)/(dx^2) = [-4y+4x(dy/dx)]/(16y^2)d2ydx2=4y+4x(dydx)16y2

Substitute (dy)/(dx) =(-x)/(4y)dydx=x4y

(d^2y)/(dx^2)= [-cancel(4)y+cancel(4)x((-x)/(4y))]/(4cancel(16)y^2)

Simplify:
(d^2y)/(dx^2)= [(-y)/(4y^2)]-[(x^2)/((4y)(4y^2))]

(d^2y)/(dx^2)= [(-1)/(4y)]-[(x^2)/(16y^3)]

Make a common denominator to combine into one fraction:

(d^2y)/(dx^2)= (-4y^2-x^2)/(16y^3)
(d^2y)/(dx^2)= (-(4y^2+x^2))/(16y^3)

Recall that the original equation states that 4y^2+x^2=5, so:

(d^2y)/(dx^2)= (-5)/(16y^3)