How do you find (d^2y)/(dx^2)d2ydx2 given x+siny=xyx+siny=xy?

1 Answer
Sep 5, 2016

(d^2y)/dx^2=[(y-1){(y-1)siny+2(cosy-x)}]/(cosy-x)^3d2ydx2=(y1){(y1)siny+2(cosyx)}(cosyx)3.

Explanation:

x+siny=xy rArr siny=xy-x=x(y-1) rArr x=siny/(y-1)x+siny=xysiny=xyx=x(y1)x=sinyy1

rArr d/dy(x)=d/dy(siny/(y-1))ddy(x)=ddy(sinyy1)

rArr dx/dy={(y-1)d/dy(siny)-sinyd/dy(y-1)}/(y-1)^2dxdy=(y1)ddy(siny)sinyddy(y1)(y1)2

={(y-1)cosy-siny}/(y-1)^2=(y1)cosysiny(y1)2

Since, siny=x(y-1)siny=x(y1), we have,

dx/dy={(y-1)cosy-x(y-1)}/(y-1)^2=(cosy-x)/(y-1)dxdy=(y1)cosyx(y1)(y1)2=cosyxy1

:. dy/dx=(y-1)/(cosy-x).......................................................(star)

rArr y'(cosy-x)=y-1

:. d/dx{y'(cosy-x)}=d/dx(y-1)

:. y'd/dx(cosy-x)+(cosy-x)d/dx(y')=dy/dx-0=y'.

:. y'{d/dxcos y-d/dx(x)}+(cosy-x)y''=y'.

:. y'{(-siny)y'-1}+(cosy-x)y''=y'.

:. (cosy-x)y''=y'(y'siny+1)+y'=y'(y'siny+2).

=(y-1)/(cosy-x){((y-1)siny)/(cosy-x)+2}.....................[by (star)]

:. y''=(y-1)/(cosy-x)^2{((y-1)siny)/(cosy-x)+2}

rArr (d^2y)/dx^2=y''=[(y-1){(y-1)siny+2(cosy-x)}]/(cosy-x)^3.

Enjoy maths.!