How do you find #(d^2y)/(dx^2)# given #x+siny=xy#?

1 Answer
Sep 5, 2016

#(d^2y)/dx^2=[(y-1){(y-1)siny+2(cosy-x)}]/(cosy-x)^3#.

Explanation:

#x+siny=xy rArr siny=xy-x=x(y-1) rArr x=siny/(y-1)#

#rArr d/dy(x)=d/dy(siny/(y-1))#

#rArr dx/dy={(y-1)d/dy(siny)-sinyd/dy(y-1)}/(y-1)^2#

#={(y-1)cosy-siny}/(y-1)^2#

Since, #siny=x(y-1)#, we have,

#dx/dy={(y-1)cosy-x(y-1)}/(y-1)^2=(cosy-x)/(y-1)#

#:. dy/dx=(y-1)/(cosy-x).......................................................(star)#

#rArr y'(cosy-x)=y-1#

#:. d/dx{y'(cosy-x)}=d/dx(y-1)#

#:. y'd/dx(cosy-x)+(cosy-x)d/dx(y')=dy/dx-0=y'#.

#:. y'{d/dxcos y-d/dx(x)}+(cosy-x)y''=y'#.

#:. y'{(-siny)y'-1}+(cosy-x)y''=y'#.

#:. (cosy-x)y''=y'(y'siny+1)+y'=y'(y'siny+2)#.

#=(y-1)/(cosy-x){((y-1)siny)/(cosy-x)+2}.....................[by (star)]#

#:. y''=(y-1)/(cosy-x)^2{((y-1)siny)/(cosy-x)+2}#

#rArr (d^2y)/dx^2=y''=[(y-1){(y-1)siny+2(cosy-x)}]/(cosy-x)^3#.

Enjoy maths.!