How do you find #(d^2y)/(dx^2)# given #x=tany#?

2 Answers
Sep 5, 2016

# AA y in RR, (d^2y)/dx^2=(-2x)/(1+x^2)^2#.

Explanation:

#x=tan y#.

Case : 1 #"Suppose that,"y in (-pi/2,pi/2) rArr y=arc tan x, x in RR#

#:. dy/dx=1/(1+x^2)#.

#:. (d^2y)/dx^2=d/dx(dy/dx)=d/dx(1/(1+x^2))#

Since, #d/dt(1/t)=-1/t^2#, we have, by the Chain Rule,

#(d^2y)/dx^2=-1/((1+x^2)^2)*d/dx(1+x^2)=(-2x)/((1+x^2)^2)#

Case : 2 #"Next, let "y in (pi/2,3pi/2) rArr pi/2<,y<,3pi/2#

#rArr pi/2-pi<,y-pi<,3pi/2-pi#

#rArr -pi/2<,y-pi<,pi/2, &, tan(y-pi)=-tan(pi-y)=-(-tany)=tany=x#.

Thus, in this Case, #x=tan(y-pi), where, (y-pi) in (-pi/2,pi/2)#

#:." by defn. of arc tan, "y-pi=arc tanx, or, y=pi+arc tan x#

#:. (d^2y)/dx^2=(-2x)/(1+x^2)^2#, as in Case : 1

Thus, # AA y in RR, (d^2y)/dx^2=(-2x)/(1+x^2)^2#.

Sep 5, 2016

To differentiate without using the inverse tangent, see below.

Explanation:

#tan y = x#

Differentiate both sides with respect to #x#.

#d/dx(tanx) = d/dx(x)#

#sec^2y dy/dx = 1#

#dy/dx = cos^2y#

Differentiate again w.r.t. #x#

#(d^2y)/dx^2 = 2cos y (-siny dy/dx)#

Now rfeplace #dy/dx#

#(d^2y)/dx^2 = -2 siny cos^3 y#

To see that this is the same as the other answer

#tany = x# #rArr# #cos y = 1/(1+x^2)#

(To see this draw and label a right triangle with angle #y#, opposite side #x# and adjacent side #1#. So the hypotenuse is #1+x^2#.)

(Or use #tany=x# #rArr# #tan^2y = x^2#, so #1+tan^2y = 1+x^2# and #sec^y = 1+x^2# so that #cos y = 1/(1+x^2)#

Now,

#(d^2y)/dx^2 = -2 siny cos^3 y#

# = -2 siny/cosy cos^4y#

# = -2tany (cos^2y)^2#

# = -2 x 1/(1+x^2)^2#

# = (-2x)/(1+x^2)^2#.