How do you find dy/dx by implicit differentiation for #1+x = sin(xy^2)#?

1 Answer
May 11, 2018

#(dy)/(dx)=1/(cos(x*y^2)*2x*y)-y/(2x)#

Explanation:

Implicitly differentiate the Left-Hand Side with respect to #x#:

The right-hand side is slightly trickier...

  • #color(white)(l)d/(dx)[sin(x*y^2)]#
    #=cos(x*y^2)*d/(dx)[x*y^2]#
    #=cos(x*y^2)*(y^2+2x*y*(dy)/(dx))#
    by the chain rule along with the cosine rule.

Hence

#d/(dx)[1+x]=d/(dx)[sin(x^2*y)]#
#1=cos(x*y^2)*(y^2+2x*y*(dy)/(dx))#

The question is asking for #color(darkblue)((dy)/(dx))# so we shall seek to isolate that expression as a whole.

#1=cos(x*y^2)*(y^2)+cos(x*y^2)*2x*y*color(darkblue)((dy)/(dx))#
#cos(x*y^2)*2x*y*color(darkblue)((dy)/(dx))=1-cos(x*y^2)*(y^2)#

#color(darkblue)((dy)/(dx))=1/(cos(x*y^2)*2x*y)-(color(red)(cancel(color(black)(cos(x*y^2))))*y^color(red)(cancel(color(black)(2))))/(color(red)(cancel(color(black)(cos(x*y^2))))*2x*color(red)(cancel(color(black)(y))))#
#color(white)(color(white)((dy)/(dx)))=1/(cos(x*y^2)*2x*y)-y/(2x)#