How do you find dy/dxdydx by implicit differentiation given x^2+3xy+y^2=0x2+3xy+y2=0?

3 Answers
Jun 17, 2017

Given: x^2+3xy+y^2=0x2+3xy+y2=0

Differentiate each term with respect to x:

(d(x^2))/dx + (3d(xy))/dx+ (d(y^2))/dx=(d(0))/dxd(x2)dx+3d(xy)dx+d(y2)dx=d(0)dx

Use the power rule, dy/dx = nx^(x-1)dydx=nxx1, on the first term:

2x + (3d(xy))/dx+ (d(y^2))/dx=(d(0))/dx2x+3d(xy)dx+d(y2)dx=d(0)dx

Use the product rule, (d(xy))/dx= dx/dxy+xdy/dx = y + xdy/dxd(xy)dx=dxdxy+xdydx=y+xdydx on the second term:

2x + 3(y + xdy/dx)+ (d(y^2))/dx=(d(0))/dx2x+3(y+xdydx)+d(y2)dx=d(0)dx

Use the chain rule, (d(y^2))/dx=2ydy/dxd(y2)dx=2ydydx, on the third term:

2x + 3(y + xdy/dx)+ 2ydy/dx=(d(0))/dx2x+3(y+xdydx)+2ydydx=d(0)dx

The derivative of a constant is 0:

2x + 3(y + xdy/dx)+ 2ydy/dx=02x+3(y+xdydx)+2ydydx=0

Distribute the 3:

2x + 3y + 3xdy/dx+ 2ydy/dx=02x+3y+3xdydx+2ydydx=0

Move all of the terms that do not contain dy/dxdydx to the right:

3xdy/dx+ 2ydy/dx=-(2x+3y)3xdydx+2ydydx=(2x+3y)

Factor out dy/dxdydx:

(3x+2y)dy/dx=-(2x+3y)(3x+2y)dydx=(2x+3y)

Divide by 3x+2y3x+2y:

dy/dx=-(2x+3y)/(3x+2y)dydx=2x+3y3x+2y

Jun 17, 2017

dy/dx=-(2x+3y)/(3x+2y)dydx=2x+3y3x+2y

Explanation:

"differentiate "color(blue)"implicitly with respect to x"differentiate implicitly with respect to x

"the term " 3xy" is differentiated using the "color(blue)"product rule"the term 3xy is differentiated using the product rule

#rArr2x+3(x.dy/dx+y.1)+2y.dy/dx=0#

rArr2x+3xdy/dx+3y+2ydy/dx=02x+3xdydx+3y+2ydydx=0

rArrdy/dx(3x+2y)=-2x-3ydydx(3x+2y)=2x3y

rArrdy/dx=-(2x+3y)/(3x+2y)dydx=2x+3y3x+2y

Jun 17, 2017

(dy)/(dx)=-1/2(sqrt 5 pm 3)dydx=12(5±3)

Explanation:

From x^2 + 3 x y + y^2=0 -> y = -1/2(sqrt 5 pm 3)xx2+3xy+y2=0y=12(5±3)x

then

(dy)/(dx)=-1/2(sqrt 5 pm 3)dydx=12(5±3)