How do you find #dy/dx# by implicit differentiation given #x^2+3xy+y^2=0#?

3 Answers
Jun 17, 2017

Given: #x^2+3xy+y^2=0#

Differentiate each term with respect to x:

#(d(x^2))/dx + (3d(xy))/dx+ (d(y^2))/dx=(d(0))/dx#

Use the power rule, #dy/dx = nx^(x-1)#, on the first term:

#2x + (3d(xy))/dx+ (d(y^2))/dx=(d(0))/dx#

Use the product rule, #(d(xy))/dx= dx/dxy+xdy/dx = y + xdy/dx# on the second term:

#2x + 3(y + xdy/dx)+ (d(y^2))/dx=(d(0))/dx#

Use the chain rule, #(d(y^2))/dx=2ydy/dx#, on the third term:

#2x + 3(y + xdy/dx)+ 2ydy/dx=(d(0))/dx#

The derivative of a constant is 0:

#2x + 3(y + xdy/dx)+ 2ydy/dx=0#

Distribute the 3:

#2x + 3y + 3xdy/dx+ 2ydy/dx=0#

Move all of the terms that do not contain #dy/dx# to the right:

#3xdy/dx+ 2ydy/dx=-(2x+3y)#

Factor out #dy/dx#:

#(3x+2y)dy/dx=-(2x+3y)#

Divide by #3x+2y#:

#dy/dx=-(2x+3y)/(3x+2y)#

Jun 17, 2017

#dy/dx=-(2x+3y)/(3x+2y)#

Explanation:

#"differentiate "color(blue)"implicitly with respect to x"#

#"the term " 3xy" is differentiated using the "color(blue)"product rule"#

#rArr2x+3(x.dy/dx+y.1)+2y.dy/dx=0#

#rArr2x+3xdy/dx+3y+2ydy/dx=0#

#rArrdy/dx(3x+2y)=-2x-3y#

#rArrdy/dx=-(2x+3y)/(3x+2y)#

Jun 17, 2017

#(dy)/(dx)=-1/2(sqrt 5 pm 3)#

Explanation:

From #x^2 + 3 x y + y^2=0 -> y = -1/2(sqrt 5 pm 3)x#

then

#(dy)/(dx)=-1/2(sqrt 5 pm 3)#