How do you find #dy/dx# by implicit differentiation given #x=siny+cosy#?
1 Answer
Feb 1, 2017
# dy/dx = 1/(cos y -sin y) #
Explanation:
We have:
# x = sin y + cos y #
Method 1 - Use the Chain Rule
Differentiate wrt
# dx/dy = cos y -sin y #
By the chain rule;
# dy/dx = 1/(cos y -sin y) #
Method 2 - Implicit Differentiation
Differentiate wrt
# \ \ \ \ \ \ \ \ 1 = d/dx(sin y + cos y) #
# :. \ \ \ 1 = dy/dx*d/dy(sin y + cos y) #
# :. \ \ \ 1 = dy/dx*(cos y -sin y) #
# :. dy/dx = 1/(cos y -sin y) #