How do you find dy/dxdydx by implicit differentiation given y^2=ln(2x+3y)y2=ln(2x+3y)?

1 Answer
Feb 21, 2017

dy/dx=2/(6y^2+4xy-3).dydx=26y2+4xy3.

Explanation:

y^2=ln(2x+3y)y2=ln(2x+3y)

:. d/dx(y^2)=d/dx{ln(2x+3y)}.

Using the Chain Rule, we have,

d/dy(y^2)dy/dx=1/(2x+3y)d/dx(2x+3y).

:. 2ydy/dx=1/(2x+3y){2+3dy/dx}.

=2/(2x+3y)+3/(2x+3y)dy/dx.

:. {2y-3/(2x+3y)}dy/dx=2/(2x+3y).

:., if (2x+3y)ne0, {(4xy+6y^2-3)/cancel(2x+3y)}dy/dx=2/cancel(2x+3y).

As, (2x+3y)=0 makes ln(2x+3y) undefined, we have,

:. dy/dx=2/(6y^2+4xy-3).