How do you find (dy)/(dx)dydx given (2x-3)^2+(4y-5)^2=10(2x3)2+(4y5)2=10?

1 Answer
Nov 6, 2016

The derivative is dy/dx = (3 - 2x)/(8y - 10)dydx=32x8y10.

Explanation:

Start by expanding the parentheses.

4x^2 - 12x + 9 + 16y^2 - 40y + 25 = 104x212x+9+16y240y+25=10

d/dx(4x^2 - 12x + 9 + 16y^2 - 40y + 25) = d/dx(10)ddx(4x212x+9+16y240y+25)=ddx(10)

d/dx(4x^2) + d/dx(-12x) + d/dx(9) + d/dx(16y^2) + d/dx(-40y) + d/dx(25) = d/dx(10)ddx(4x2)+ddx(12x)+ddx(9)+ddx(16y2)+ddx(40y)+ddx(25)=ddx(10)

8x - 12 + 0 + 32y(dy/dx) - 40(dy/dx) + 0 = 08x12+0+32y(dydx)40(dydx)+0=0

32y(dy/dx) - 40(dy/dx) = 12 - 8x32y(dydx)40(dydx)=128x

dy/dx(32y - 40) = 12 - 8xdydx(32y40)=128x

dy/dx = (12 - 8x)/(32y - 40)dydx=128x32y40

dy/dx = (4(3 - 2x))/(4(8y - 10))dydx=4(32x)4(8y10)

dy/dx= (3- 2x)/(8y - 10)dydx=32x8y10

Hopefully this helps!