How do you find (dy)/(dx) given -3x^2y^2-2y^3+5=5x^2?

1 Answer
Sep 22, 2017

(dy)/(dx)=(-(5x+3xy^2))/(3y(x^2+y)

Explanation:

we want

d/(dx)(-3x^2y^2)-d/(dx)(2y^3)+d/(dx)(5)=d/(dx)(5x^2)

We will differentiate implicitly.

The first term will also need the product rule

color(red)(d/(dx)(uv)=v(du)/(dx)+u(dv)/(dx))

y^2(-6x)+(-3x^2)2y(dy)/(dx)-6y^2(dy)/(dx)+0=10x

-6xy^2-6x^2y(dy)/(dx)-6y^2(dy)/(dx)=10x

now rearrange for (dy)/(dx) and tidy up.

(dy)/(dx)(-6x^2y-6y^2)=10x+6xy^2

(dy)/(dx)=(10x+6xy^2)/(-6y(x^2+y)

(dy)/(dx)=(-(5x+3xy^2))/(3y(x^2+y)