we want
d/(dx)(-3x^2y^2)-d/(dx)(2y^3)+d/(dx)(5)=d/(dx)(5x^2)ddx(−3x2y2)−ddx(2y3)+ddx(5)=ddx(5x2)
We will differentiate implicitly.
The first term will also need the product rule
color(red)(d/(dx)(uv)=v(du)/(dx)+u(dv)/(dx))ddx(uv)=vdudx+udvdx
y^2(-6x)+(-3x^2)2y(dy)/(dx)-6y^2(dy)/(dx)+0=10xy2(−6x)+(−3x2)2ydydx−6y2dydx+0=10x
-6xy^2-6x^2y(dy)/(dx)-6y^2(dy)/(dx)=10x−6xy2−6x2ydydx−6y2dydx=10x
now rearrange for (dy)/(dx)dydx and tidy up.
(dy)/(dx)(-6x^2y-6y^2)=10x+6xy^2dydx(−6x2y−6y2)=10x+6xy2
(dy)/(dx)=(10x+6xy^2)/(-6y(x^2+y)dydx=10x+6xy2−6y(x2+y)
(dy)/(dx)=(-(5x+3xy^2))/(3y(x^2+y)dydx=−(5x+3xy2)3y(x2+y)